Changes in the temperature sensitivity of SOM decomposition with grassland succession: implications for soil C sequestration

نویسندگان

  • He Nianpeng
  • Wang Ruomeng
  • Gao Yang
  • Dai Jingzhong
  • Wen Xuefa
  • Yu Guirui
چکیده

Understanding the temperature sensitivity (Q 10) of soil organic matter (SOM) decomposition is important for predicting soil carbon (C) sequestration in terrestrial ecosystems under warming scenarios. Whether Q 10 varies predictably with ecosystem succession and the ways in which the stoichiometry of input SOM influences Q 10 remain largely unknown. We investigate these issues using a grassland succession series from free-grazing to 31-year grazing-exclusion grasslands in Inner Mongolia, and an incubation experiment performed at six temperatures (0, 5, 10, 15, 20, and 25°C) and with four substrates: control (CK), glucose (GLU), mixed grass leaf (GRA), and Medicago falcata leaf (MED). The results showed that basal soil respiration (20°C) and microbial biomass C (MBC) logarithmically decreased with grassland succession. Q 10 decreased logarithmically from 1.43 in free-grazing grasslands to 1.22 in 31-year grazing-exclusion grasslands. Q 10 increased significantly with the addition of substrates, and the Q 10 levels increased with increase in N:C ratios of substrate. Moreover, accumulated C mineralization was controlled by the N:C ratio of newly input SOM and by incubation temperature. Changes in Q 10 with grassland ecosystem succession are controlled by the stoichiometry of newly input SOM, MBC, and SOM quality, and the combined effects of which could partially explain the mechanisms underlying soil C sequestration in the long-term grazing-exclusion grasslands in Inner Mongolia, China. The findings highlight the effect of substrate stoichiometry on Q 10 which requires further study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in Temperature Sensitivity and Activation Energy of Soil Organic Matter Decomposition in Different Qinghai-Tibet Plateau Grasslands

Qinghai-Tibet Plateau grasslands are unique geographical regions and store substantial soil organic matter (SOM) in the soil surface, which make them very sensitive to global climate change. Here, we focused on three main grassland types (alpine meadow, steppe, and desert) and conducted a soil incubation experiment at five different temperatures (5, 10, 15, 20, and 25°C) to investigate SOM deco...

متن کامل

Stoichiometrical regulation of soil organic matter decomposition and its temperature sensitivity

The decomposition of soil organic matter (SOM) can be described by a set of kinetic principles, environmental constraints, and substrate supply. Here, we hypothesized that SOM decomposition rates (R) and its temperature sensitivity (Q 10) would increase steadily with the N:C ratios of added substrates by alleviating N limitation on microbial growth. We tested this hypothesis by investigating SO...

متن کامل

Nitrogen addition changes grassland soil organic matter decomposition

Humans have dramatically increased the deposition and availability of nutrients, such as nitrogen (N), worldwide. Soil organic matter (SOM) is a significant global reservoir of carbon (C); however, the effects of N enrichment on this large, heterogeneous C stock are unclear. Nitrogen has variable effects on the biological, chemical, and physical factors that determine SOM pool mean residence ti...

متن کامل

Differences in SOM Decomposition and Temperature Sensitivity among Soil Aggregate Size Classes in a Temperate Grasslands

The principle of enzyme kinetics suggests that the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition is inversely related to organic carbon (C) quality, i.e., the C quality-temperature (CQT) hypothesis. We tested this hypothesis by performing laboratory incubation experiments with bulk soil, macroaggregates (MA, 250-2000 μm), microaggregates (MI, 53-250 μm), and mineral f...

متن کامل

Long-Term Grazing Exclusion Improves the Composition and Stability of Soil Organic Matter in Inner Mongolian Grasslands

Alteration of the composition of soil organic matter (SOM) in Inner Mongolian grassland soils associated with the duration of grazing exclusion (GE) has been considered an important index for evaluating the restoring effects of GE practice. By using five plots from a grassland succession series from free grazing to 31-year GE, we measured the content of soil organic carbon (SOC), humic acid car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013